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ABSTRACT 

Over the past decade, the Department of Defense has placed a great amount of 

attention on the advancements of unmanned aerial vehicles (UAVs), and more 

specifically on employing a large number of autonomous UAVs into “swarms.” These 

swarms form an organized cluster of vehicles to act out multifaceted operations as a 

group. Despite the benefits offered by UAV swarms, there are hurdles that engineering 

teams must grapple with while designing a UAV swarm system. One key area is creating 

and understanding the swarming behavior and revealing all potential failure scenarios 

that may impact the desired mission. This research uses Monterey Phoenix (MP) to 

model system behaviors by grouping them into distinct, reusable agent-like models of 

possible actor behaviors and modeling actor interactions as separate constraints. This 

approach affords the ability to compute every possible variation of actor behaviors with 

every other possible actor behavior from these models, which generates an exhaustive set 

of possible scenarios or event traces. Through manual inspection or semi-automated 

assertion checking of these event traces, the discovery of unwanted and undesirable 

behaviors and failure modes is achievable, which allows mission planners to then 

counteract these unsolicited instances with necessary failsafe behaviors. 
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EXECUTIVE SUMMARY 

Since 2001, on an international scale, the United States military has had over 400 

unmanned aerial vehicles (UAVs) and drones crash and create major accidents. The 

drones failed because of issues with weather, mechanical components, human error, and 

many other reasons (Whitlock 2014). The main goal of this research is to determine the 

efficacy of modeling UAV failure modes and corresponding failsafe behaviors alongside 

Search and Rescue (SAR) models. By placing these failure modes and failsafe behaviors 

into concepts of operations (CONOPS) early in the mission planning life cycle, we are 

able to identify pitfalls that would be otherwise costly and detrimental to the success of 

the mission. 

Today, the Department of Defense is moving to a more distributed approach to 

using UAVs by employing multiple UAVs into swarms. Despite the benefits offered by 

UAV swarms, there are hurdles engineering teams must grapple with while designing a 

UAV swarm system. One key area is creating and understanding the swarming behavior 

and revealing all potential failure scenarios that may impact the desired mission. This 

research uses Monterey Phoenix (MP) to model system behaviors by grouping them into 

distinct, reusable agent-like models of possible actor behaviors and modeling actor 

interactions as separate constraints. This approach affords the ability to compute every 

variation of actor behaviors with every other possible actor behavior from these models, 

which generates an exhaustive set of possible scenarios. The amount of potential swarm 

behavior states produced by MP far exceeds the number that a capable human could 

manually generate and can be accomplished in a fraction of the time. Through manual 

and semi-automated inspection of these event traces, the discovery of unwanted and 

undesirable behaviors and failure modes is achievable, which allows mission planners to 

then counteract these unsolicited instances with necessary failsafe behaviors. 

Some of the UAV failure modes modeled in this research include payload loss of 

link, loss of global positioning system (GPS), and autopilot failure. In planning for the 

mitigation of risks and potential failures, certain assumptions are made about what 

behaviors should be implemented to counteract these unintended consequences. For 
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example, a reasonable failsafe behavior that was initially modeled for the loss of GPS 

was to reduce throttle and attempt to land. After modeling this mitigation tactic and 

several other failure modes in MP and inspecting the various event traces, a new failure 

mode option became apparent. The early planning of the failsafe behavior for a payload 

loss of link failure mode was to attempt to re-establish connection. After modeling both 

loss of GPS and payload loss of link, the new failsafe behavior (attempt reconnection) 

was implemented into the model. This research identifies a common failsafe behavior as 

a recovery strategy for two UAV failure modes. After modeling all failure modes, the 

process of failure mode prioritization started. Given the incremental approach to 

modeling individual failures, it was not until this point that inconsistencies among similar 

failsafe behaviors started emerging.  

Monterey Phoenix makes the otherwise daunting task of understanding the 

behavior of complex processes and systems manageable through rapid generation of 

event traces. Commonality of failure mode recovery strategies is just one of several 

benefits that MP afforded this modeling research effort. Others include the establishment 

of a pattern for rapid failure mode modeling, understanding the prioritization of failure 

modes, and a surprising emergent behavior from a bingo fuel scenario that inspired a 

failsafe behavior that may have been otherwise overlooked until live experimentation or 

testing.   
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

The ability to understand how a single event can have cascading effects on 

corresponding processes within a single system or system of systems can provide 

invaluable benefit to a project, mission or program. This is especially true in unmanned 

operations, where mission planners must understand the gravity of every behavior in a 

large multiple agent operation. Whether in defensive, offensive or humanitarian 

initiatives, future and some present day operations are moving rapidly toward the 

employment of swarm operations to overwhelm or saturate the given objective through 

“deliberately structured, coordinated, strategic way to strike from all directions, by means 

of a sustainable pulsing of force and/or fire” (Arquilla and Ronfeldt 2013). In one-to-one 

unmanned systems operations (i.e., one operator and one UAV), it is relatively simple for 

the human brain to comprehend the multiple steps in an operation. Furthermore, it is 

feasible for the human brain to understand how unexpected changes or behaviors can 

impact a simple one-to-one ratio system. As we increase the volley of agents and start 

utilizing swarms to accomplish otherwise easy-to-understand tasks, on an exponential 

scale, the ability to calculate the impact of a single event on the swarm is lost, as 

demonstrated in Chapter II. 

In addition to understanding the expected or anticipated events of a system, it is 

even more difficult to understand what impact a system component failure may have to 

the system. Failure of a UAV is difficult to predict. A variety of system behavior models 

have been used, but all have their limitations (Giammarco and Auguston 2013). 

Unfortunately, the mitigation planning for failure modes is too often introduced later in a 

project’s development cycle, which can have huge impacts on cost and schedule. In 

swarm operations, improperly planning for the impacts of failures early in the life of a 

project can result in catastrophic program or mission disasters.  
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B. RESEARCH QUESTIONS 

Often during the discovery of a problem, the next logical step is to hypothesize or 

theorize remedies for an established problem. Assuming a specific solution too quickly 

can present challenges and hinder the true understanding of the problem (Giammarco, 

Hunt, and Whitcomb 2015). While a plethora of ideas and solutions may be applicable, to 

address the problem of understanding how failures can impact complex systems, this 

thesis uses the Monterey Phoenix (MP) modeling software to answer the following 

research question: 

Can the operational context and derived behavior of UAV swarm systems 
be analyzed through Monterey Phoenix computational models and 
simulations to reveal potential failure scenarios, and can failsafe behaviors 
be generated to counteract the emergence of new failure modes? 

The MP modeling environment provides a breakdown of all potential event traces. 

Given that the research questions call for the revelation of potential failure modes, MP 

was selected as the modeling environment because it provides a substantial set of results 

and data, thus allowing the inspection of numerous possible outcomes. Refer to the full 

description of MP in Chapter II. 
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II. BACKGROUND AND METHODOLOGY 

A. APPROACH TO RESEARCH 

1. Monterey Phoenix 

To provide an in-depth analysis of every possible permutation in a given scenario, 

a behavior modeling approach, known as Monterey Phoenix (MP), is used for this failure 

mode modeling research. MP is “a behavioral model for system and software architecture 

specification based on event traces” (Farah-Stapleton and Auguston 2013, 271). With 

explicit objectives and involvement from stakeholders, system architecture modeling is 

an iterative process to refine the design of a system and ultimately link the requirements 

to the implementation phases of the system (Auguston 2014). By leveraging MP, this 

principle may be applied for any process-based system. The view of MP in Figure 1 is of 

the graph view, which illustrates the ability to see all possible event traces for a given 

scenario.   

 

Figure 1.  MP Sequence Diagram and Event Trace View 
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Unlike many modeling approaches, MP provides the capacity to consider all 

possible actors, or contributors, to a system. This includes contributors like direct and 

indirect stakeholders, the environment, and other systems. By breaking out the actors as 

separate entities, a system of systems approach becomes more practical to realize and can 

be expanded or contracted as needed with little effort or impact to the overall model. 

Furthermore, MP disconnects the concerns of system behaviors and system interactions, 

which are traditionally interwoven as hard-coded constraints on multi-actor activity 

models. These hard-coded constraints are typically limited to random or stochastic 

simulations that address in contrast only a small subset of potential behaviors.   

Monterey Phoenix is in large part a behavior modeling language, but it differs 

from the traditional functions, components, and connectors by representing the main 

concepts solely as activities and relationships between activities (Auguston 2016). In his 

2016 language manual, Dr. Auguston lists many key concepts; below is a summarization 

of the concepts relevant to this research. 

A view of the architecture as a high level description of possible system 
behaviors, emphasizing the behavior of subsystems (components) and 
interactions between subsystems. MP introduces the concept of event as 
an abstraction of activity. 

The separation of the interaction description from the components 
behavior is an essential MP feature. It provides for a high level of 
abstraction and supports the reuse of architectural models. Interactions 
between activities are modeled using event coordination constructs. 

The environment’s behavior is an integral part of the system architecture 
model. MP provides a uniform method for modeling behaviors of the 
software, hardware, business processes, and other parts of the system. 

The event grammar models the behavior as a set of events (event trace) 
with two basic relations, where the PRECEDES relation captures the 
dependency abstraction, and the IN relation represents the hierarchical 
relationship. Since the event trace is a set, additional constraints can be 
specified using set-theoretical operations and predicate logic. (Auguston 
2016) 

Specifically, for this research, MP is used to analyze, expose and understand how 

failure modes impact a swarm. Monterey Phoenix changes the very method by which 
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system behaviors are modeled by breaking them into discrete, object oriented agent 

(actor) models made up of possible agent behaviors. This allows for the modeling of 

failure modes woven into all swarm interactions as separate constraints and computes 

every permitted permutation of actor behavior with every other possible actor behavior 

automatically from these models, to generate an exhaustive set of possible scenarios up to 

a specified scope limit. This automated scenario generation provides a huge set of data 

for human inspection and assertion checking for the presence or absence of specific 

failure modes of concern. 

In MP, a system’s behavior is modeled as a collection of events. As Dr. Auguston 

states above, there are two relationships that exist between events: precedes and includes. 

For precedes, if one event must occur before another, a dependency is established. 

Consider the simple message flow example in Figure 2, where the event of sending a 

message must precede receipt. For includes, an event may include a subset of events. 

Again represented in Figure 2, the event “Send” includes “Prepare Message” and “Send 

Message.” 

 

Figure 2.  MP Code – Simple Message Flow Code  

Through MP’s analyzer tool located at firebird.nps.edu, modelers are able to 

generate a graphical representation of the possible event traces available from their 

model. The green blocks represent the root events or actors of the model and the orange 

and blue blocks correspond to events included in the roots. The orange blocks are 
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composite events that are made up of blue blocks that correspond to atomic events. The 

dashed arrows represent inclusion relationships within events and the solid arrows are 

precedence relationships between events. For example, in Figure 3, the event “Send” is 

made up of  “Prepare Message” and “Send Message.” Since both are in the “Send” event, 

a dashed arrow links “Send” to the nested events.  

 

Figure 3.  MP Sequence Diagram – Simple Message Flow Model 

Monterey Phoenix also provides the ability to represent events in various patterns. 

Table 1 describes the various patterns in both natural language and MP event grammar. 

These patterns offer a reference for many of the patterns represented in this thesis 

research. 
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Table 1.   MP Event Patterns 

Pattern Natural Language Description Pattern Expressed as MP Event Grammar 

Ordered sequence of events (B followed by C) A: B C; 

Alternative events (B or C) A: ( B | C ); 

Optional event (B or no event at all) A: [ B ]; 

Ordered sequence of zero or more events B A: (* B *); 

Ordered sequence of one or more events B A: (+ B +); 

Unordered set of events B and C  
(B and C may happen concurrently) 

A: { B, C }; 

Unordered set of zero or more events B A: {* B *}; 

Unordered set of one or more events B A: {+ B +}; 

Source: Mikhail Auguston, “MP Event Grammar,” accessed July 1, 2016, 
https://wiki.nps.edu/display/MP/Event+Grammar. 

 

 

a. Small Scope Hypothesis 

Given the exhaustive set of scenarios generated, one of the most beneficial 

features of MP is the ability to check or validate models. Model validation is not a new 

technique, as it was originally “developed in the 1980s for analyzing protocols and 

hardware designs that could be expressed as finite state machines” (Jackson 2006). 

Model checking was proven to be extremely effective in identifying errors, which led to 

the testing of unbounded system models. This new application introduced the notion of 

scope considerations. The Small Scope Hypothesis (Jackson 2006) states that most errors 

can be exposed on small examples or “that systems that fail on large instances almost 

always fail on small ones with similar properties” and similarities between modeled to 

actual systems are irrelevant.   

Monterey Phoenix generates a finite number of event traces from a model 

comprising potentially an infinite number of behaviors. By limiting the scope, the same 

failures can be exposed by simulating only a small number, typically three, of iterations 

on the model loops. Additionally, the number of event traces and trace generation time 
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may increase on an exponential scale as the scope limit is increased (Auguston 2016). 

Consider the following MP example of a simple air-to-air combat scenario between two 

sets of swarms, each consisting of one or more UAVs, set by the scope limit. Per the 

model, each UAV can only perform one attack operation, shoot the enemy UAV, which 

can result in a hit or miss. As a resultant, each UAV can be destroyed or survive and 

return to its base. 

 

Figure 4.  MP Code – Swarm vs. Swarm 
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Figure 5.  MP Sequence Diagram – Swarm vs. Swarm 

When the scope limit is set to one (i.e., each swarm has only one UAV), MP 

generates a small number of event traces. Like the Punnett square exercise, the possible 

scenarios are fairly easy to comprehend, which are (a) both UAVs are destroyed, (b) both 

UAVs survive, (c) the blue UAV survives and the red UAV is destroyed, and (d) the red 

UAV survives and the blue UAV is destroyed. As the scope limit is increased, the 

number of event traces grows drastically, see Figure 6. Again, considering the concept of 

the small scope hypothesis, all scenarios and failure patterns should be identified at or 

around scope limit three. 
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Figure 6.  Swarm vs. Swarm Event Trace Graph 

Dr. Kristin Giammarco (2012) took the analysis of small scope hypothesis a step 

further in her dissertation, “Architecture Model-Based Interoperability Assessment,” to 

further test “that most flaws that appear in large instances with many variables and 

relations also appear in smaller instances (fewer variables and relations).” Using the 

Alloy Analyzer, her research checked for assertions spanning scopes on a sliding scale 

from 3 to 20. With an exponential relationship, the number of variables and the time 

required to solve the possible event traces escalated as the scope increased. The natural 

assumption would be that confidence levels in the model would increase as the scope 

increased. Through manual inspection and automated assertion checking, she was able to 

prove that there were no new behaviors at scope 20 there were not also present at scope 3 

(Giammarco 2012).  

2. Emergent Behavior  

Emergent behavior has received many different definitions across numerous fields 

of study. According to Dyson, “Emergent behavior is that which cannot be predicted 

through analysis at any level simpler than that of the system as a whole” (Dyson 1997). 

He goes on to explain that after everything has been described, emergent behavior is what 

remains. Consider the UAS operational demonstration at the PACOM Crimson Viper 

2010 Exercise, where two emergent behaviors were observed. While a WASP UAV was 
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executing a demonstrative search and track mission for senior DARPA leaders, a live, 

large sea hawk tracked, engaged and disabled the WASP.  

 

Figure 7.  PACOM Crimson Viper 2010 Exercise. Source: 
Perschbacher (2010). 

The immediate reaction from the project team was disappointment. In attendance 

was a DARPA Program Manager who had been working to establish a new approach to 

counter UAS operations. He recognized this event as a desirable type of emergent 

behavior and subsequently returned to DARPA to create the Falconry – Alternate Lure 

Training (FALT) project, where live falcons were trained to track and engage WASP 

UAVs.  

The introduction and subsequent rapid growth of unmanned and autonomous 

systems has had a significant impact on the predictability of the behavior of systems. 

Furthermore, today’s unmanned systems are now part of a system of systems (SoS), 

wherein not only are engineers and developers required to understand their specific 
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product, they must now have a firm understanding of how their product fits into a 

plethora of other systems, systems that are often new and potentially misunderstood. 

As a result of this massive growth in unmanned systems development, modeling 

and simulation (M&S) has become a critical tool in understanding the behavior of these 

systems. When systems are modeled, they typically have one of two results, expected or 

unexpected results, but there is often another way of viewing behavior as a subset of 

expected and unexpected results, which may be considered emergent behavior.  

There are many theories and discussions on how emergent behavior is discovered. 

This research follows the approach described by Gore and Reynolds (2008), where 

subject-matter experts are introduced early in the concept design “to test a hypothesis 

about emergent behavior.” This approach uses “causal inference procedures to reveal 

interactions of known abstractions in the model, which will cause emergent behavior. 

Causal inferencing finds cause and effect relationships among observed variables,” which 

explains or describes a set of observations (Gore and Reynolds, 2008).  

 The opening example of emergent behavior during the PACOM Crimson Viper 

2010 Exercise resulted from an unforeseen interaction with a known environmental 

element. In order for MP to reveal this emergent behavior, wildlife may need to be 

modeled as a separate actor that is capable of interacting with other actors. Monterey 

Phoenix can indirectly help to expose this type of behavior by provoking the MP user’s 

thought process. The mere presence of a general environmental element at a critical step 

in an event trace may be enough to inspire thoughts about specific examples of 

environmental elements. The involvement of subject-matter expertise can greatly assist in 

this process.  

B. LITERATURE REVIEW 

In her paper presented to the Complex Adaptive Systems Conference, K. 

Giammarco (2013) describes emergent behavior from a system of systems (SoS) 

approach using MP. She explains how “the Monterey Phoenix (MP) system architecture 

modeling framework can be used to structure independent models of task-oriented 
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systems” followed by the introduction of these independent models into larger paradigms 

to enable predictions of SoS behavior. 

M. Auguston (2014), the developer of Monterey Phoenix, describes the behavior-

modeling role the MP framework plays in understanding system architecture and how it 

aids in establishing a bridge between requirements and implementation. 

Similar to the search and rescue (SAR) mission described in later sections, in his 

Master’s thesis, S. Hunt (2015) establishes a baseline SAR mission for model-based 

evaluation. This baseline model was evaluated across many modeling techniques, 

including Monterey Phoenix. 

K. Giammarco, M. Auguston, C. Baldwin, J. Crump, and M. Farah-Stapleton 

(2014) presented the “Controlling Design Complexity with the Monterey Phoenix 

Approach” paper to the Complex Adaptive Systems Conference, which aimed to 

“describe how the Monterey Phoenix (MP) approach can be used to decompose a 

complex problem into smaller, more manageable models.”  

J. Pilcher (2015) analyzes MP as a tool to aid the Department of Defense 

Architecture Framework (DODAF) to better understand and intercept errors earlier in the 

design process. Interestingly, through her order-processing model, she was able to expose 

an unwanted or unexpected emergent outcome (scenario ending in a waiting state) 

through the MP model (Pilcher 2015). 

V. Steward (2015) analyzed and compared two modeling tools, Innoslate and MP, 

for a search and rescue (SAR) mission. During her research, she identified an emergent 

behavior using MP, where a UAV returned to base too soon and did not search for 

additional survivors or wreckage once one was found. 

The knowledge gathered from this literature review provides a foundation for the 

research performed in this thesis. The two examples of emergent behavior lay the 

groundwork for exposing unwanted emergent behaviors in UAV swarm use cases.  
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C. SWARM DEFINED 

Minar, Burkhart, Langton, and Askenazi (1996) define a swarm as “a collection 

of agents with a schedule of events over those agents” (Minar, Burkhart, Langton, and 

Askenazi 1996). While there is no mention of the number of agents, the term “swarm” 

implies there is more than one agent. As it relates to the military, the term swarm is 

usually applied to a strategic battle operation through a purposefully arranged and 

organized set of assets with the intent to attack from every direction. Whether near or far 

away from the enemy line, this overwhelming approach is accomplished with the 

defensible “pulsing” of navigable entities (Arquilla and Ronfeldt 2013). Unmanned aerial 

vehicle systems operating as a swarm have useful applications in a myriad of possible 

scenarios on and off the battlefield.  

In this research, the focus is placed on the utilization of a group of UAVs 

organized in a mesh-like structure to divide the workload of a search and rescue (SAR) 

mission (Figure 8). Swarm-based SAR missions can be worked more rapidly by 

blanketing more of the search area when the collection is spread out. Through 

redundancy, swarms can increase the chances of success mission execution. If a UAV 

drops out or crashes because of mechanical failure, the rest of the group can take over 

and complete the mission (Frantz 2005).  
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Figure 8.  SAR Operational View 

The traditional definition of a swarm, as discussed above, does not necessarily 

apply to the MP modeling approach used in this research, which allows for the scope of 

the swarm size to be as small as 1 UAV. Therefore, due to this scope-based modeling 

approach defined in the small scope hypothesis section, the number of UAVs in a swarm 

is comprised of one or more assets.   
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III. THE SEARCH AND RESCUE MODEL 

Swarm UAV missions encompass simultaneously flying UAVs in autonomous 

and coordinated flight modes, such as waypoint following or sensor-based navigation. To 

adequately test and analyze findings during model evaluation a baseline or design 

reference mission (DRM) model is created. Specifically for this thesis, a swarm-based 

search and rescue (SAR) mission is established. The concept of the SAR mission is 

familiar, which enables the focus to be on the recognition of emergent behaviors.  

A. APPLICABLE UAV FOR SAR MISSION 

From fixed-wing to multi-rotor, there are many different types of UAVs that can 

accomplish a SAR mission. The behaviors, failure modes and corresponding failsafe 

behaviors can be considerably different for each airframe. Consider the failure mode of a 

low battery or fuel for a fixed-wing and a quad-rotor UAV. A potential failsafe behavior 

for the fixed-wing aircraft may be to reduce throttle and glide until it is safe to land. For a 

quad-rotor, or any multi-rotor aircraft, gliding is not an option. Thus, a solution-specific 

approach for failure modes cannot be universal for all UAV types. For the purposes of 

this research, the Zephyr II UAV will be considered in all modeling scenarios. See Table 

2 for specific aircraft specifications and characteristics. 
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Table 2.   Zephyr II – UAS Data 

Feature Value 

UAS Name Zephyr II 

Manufacturer Rite WingRC 

Wing Span 56 in. 

Length 15.5 in. 

Dry Weight 5.5 lbs. 

Max Gross Weight 7.0 lbs. (1.5 lbs. payload capacity) 

Max Speed 40 m/s 

Cruise Speed 18 m/s 

Stall Speed 10 m/s 

Endurance 60 minutes (May vary, depends on type of batteries used) 

Engine Brushless 1300 kV or similar 

Fuel Two – Four 11.1V LiPo batteries (connected in parallel) 

Max Range 40 km (May vary, depends on type of batteries used) 

Communications 2.4 – 2.48 GHz, up to 30 Mbps 
902 – 928 MHz, up to 115.2 kbps 

Default Payloads 
Mesh network router 
PC104 or ODroid computer 
GoPro Camera 

Source: Michael Day, Naval Postgraduate School (personal communication, 2014) 

 

Dr. Timothy Chung (2014) explains that each Zephyr II aircraft has a primary 

flight control systems that is managed by an autopilot module known as ArduPilot. 

ArduPilot is separate from the swarming control system developed by NPS. Each aircraft 

is an independent agent in the swarm, and is required to synchronize with other swarming 

agents:  “Failsafe behaviors on agents in a swarm are managed the same way as “single 

plane sorties” (Chung 2014). 
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B. ACTORS 

When modeling swarm-based SAR missions, the capacity exists for a large 

number of agents or actors operating both individually and as a group within the model. 

The following list describes a potential set of actors for a conceptual swarm-based SAR 

mission. 

• Flight Crew – The Flight Crew is an encompassing term that refers to the 
personnel necessary to manage all logistical aspects required during a 
SAR mission.  

• Swarm – The Swarm is an encompassing term, but only refers to the finite 
collection UAVs assigned to the active SAR mission.  

• Mission Commander – The Mission Commander is the individual in 
charge of all swarm operations for the SAR mission. 

• Swarm Operator – The Swarm Operator works very closely with the 
Mission Commander and is the individual responsible for piloting the 
swarm. While still required, this position can become marginal as the size 
of the swarm grows. Large quantities of UAV must operate with a high 
level of autonomy and “increasing the autonomy of unmanned platforms 
could reduce the number of operators per vehicle, thus simplifying the task 
of the operating crew controlling vehicles involved in complex missions 
and potentially reducing costs” (Rabbath, Alain, and Léchevin 2010). 

• Range Control – Range Control receives a briefing on mission planning 
and is notified of launch and landing attempts 

• Safety Coordinator – The Safety Coordinator executes prefight checklists, 
verifies the environmental conditions and provides valuable information to 
the Mission Commander. 

• Physical Environment – The Physical Environment encompasses all 
external factors that are outside of the control of machine and human 
actors. While this is not an obvious actor, it plays a vital role in modeling 
behaviors of systems. Chances of receiving inaccurate results are greatly 
increased if this is not included. 

• Person in Distress (PID) – A PID is any single or group of individuals that 
require aid through the SAR mission. 

The interactions between each actor, which can be interactions among many, can 

quickly become detailed and complex. Even at the smallest subroutines of a SAR 

swarming mission scenario, the potential number of exchanges can be overwhelming. Dr. 
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Chung explains that flight plans for all simultaneously operating aircraft are reviewed 

prior to takeoff and confirmed by Swarm Operator and Mission Commander. Unmanned 

aerial vehicles communicate wirelessly with each other, subject to constraints of LOS and 

range, to share information like telemetry and sensor data to facilitate use of coordination 

algorithms. Compact telemetry data is provided to the Swarm Operator for situational 

awareness of all aircraft (Chung 2014). The activities are just a few behaviors performed 

by a large collection of actors. Figures 9 and 10 illustrate some of the potential 

subroutines of a SAR mission scenario. 

 

Figure 9.  SAR Pre-mission Startup Operations 
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Figure 10.  SAR Initial Launch 

C. THE COMPLETE DESIGN REFERENCE MISSION 

When these interactions are modeled together to form a complete SAR mission, 

an intricate set of events and interactions between and across multiple actors begin to 

appear. As illustrated in Figure 11, the Mission Commander and Swarm Operator have 

multiple interactions with almost all actors in the model. 
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Figure 11.  MP Sequence Diagram – Swarm SAR CONOPS 

1. Scaled-Down Approach to Failure Mode Research 

Inserting failure modes directly into the complex SAR mission referenced in the 

previous section can prove to be futile. The number of interactions can quickly 

overwhelm the desired outcome of learning from failure mode insertion. 
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Alternatively, a more useful approach is scale the model down to key interactions 

that allow for the seamless insertion of failure modes. This does not mean the model 

becomes less representative of the desired event traces. A system of systems analysis 

approach can aid in producing a succinct and focused model capable of accepting 

relevant failure modes. As discovered through various modeling iterations, the author 

considered three main approaches to scaling down the model through various modeling 

iterations: isolated model extraction, phased model extraction, and model abstraction.   

Isolated model extraction is selecting a specific subsystem within a model and 

performing analyses on that single subsystem. This approach can be especially useful 

when the interactions and behaviors being observed have little to no impact on any linked 

systems. Through examination and discovery, patterns active at the system level, are 

repeated at the subsystem level and in successive layers until all common information is 

extracted. Therefore, the modeled system in MP contains a distinct layer of structure and 

function (Garcia 2015). Model extraction can present major issues, as it is difficult to 

isolate a failure mode to a single subsystem. When employing model extraction as an 

approach to scaling down a model, it is paramount that a thorough trace study be 

performed to determine trickle-down impacts to other systems.  

Similar to model extraction is a phased extraction approach, where an activity or 

process is broken down into phases before any models are actually executed. Each phase 

is treated and analyzed independently for failure modes unique to the respective phase. 

This approach drastically reduces the number of event traces that would normally be of 

no interest to other phases in the sequence. If the same behavior is present in more than 

one phase, that behavior will need to be represented across each applicable phase 

instance. This requires significant planning and decomposition to ensure incorrect 

assumptions are not made during the modeling process.  

Used primarily in this research, the model abstraction approach attempts first to 

break a model down into its major interactions. Once these interactions are determined, 

the detail for each interaction is reduced. “Abstracted systems are simplifications of more 

complex dynamical systems that retain some important information, such as 

controllability, about the original system” (Mellodge and Pushkin 2008). For example, 
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the SAR model in Figure 12 is a scaled down version of the complete DRM featured in 

the previous section. This simplified representation allows for the streamlined or 

algorithm-based introduction of failure modes. Upon execution, MP presents every event 

trace combination, making it possible quickly and easily to identify scenarios where a 

particular failure mode may influence a system. If a model is too complex, as in the 

complete SAR DRM, failure modes may become hard to discern.  

 

 

Figure 12.  MP Sequence Diagram – Abstracted SAR Model 
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Figure 13.  MP Sequence Diagram - Abstracted SAR Model (Scope 
= 2) 

In Figure 13, the scope is changed to 2, which illustrates how MP is capable of 

modeling a number of assets and separate missions on a sliding scale. In this event trace 

example, one UAV does not find any targets to analyze and subsequently ends the 

mission, while the other UAV finds and tracks a valid target. 

2. Monterey Phoenix Version of SAR 

Monterey Phoenix “represents an event as an abstraction of an activity, the 

behavior of a system can be modeled as a set of events with two binary relations defined 

for them” (Farah-Stapleton and Auguston 2013, 273) and uses an event grammar that 

allows for the compact specification of behavior for each component (Giammarco and 

Auguston, 2013). This binary relationship is represented in Figure 13 where the swarm 

operator has the monitor mission task that is composed of a subroutine. When called, this 

subroutine requires the swarm operator to assess a detected object, followed by the binary 

decision of verifying the object’s validity. This binary decision process aids in the failure 

mode and failsafe behavior analysis discussed in the next chapter. 
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Figure 14.  MP Code – Baseline SAR Mission 
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IV. FAILURE MODES AND FAILSAFE BEHAVIORS 

This chapter presents a description and analysis of many potential SAR UAS 

failure modes and corresponding failsafe behaviors using the Monterey Phoenix (MP) 

modeling tool. It is important to note, failsafe behaviors do not always link back to the 

source failure mode in a one-to-one ratio. Often, failsafe behaviors can be mission driven, 

which means the failsafe behavior for one mission (e.g., SAR) may not be applicable to a 

failure mode in a different mission. For the purposes of this research, failsafe behaviors 

are specific to Swarming SAR missions. The baseline SAR model does not produce a 

substantial number of event traces as the scope is increased. This is partially caused by 

the high level model chosen for analysis and to aid in understanding the failure modes in 

a somewhat isolated approach of breaking each failure mode out by itself. 

A. FAILURE MODES 

1. Autopilot Failure 

Many UAV missions involve some characteristic of waypoint navigation, which 

is the preprogrammed or live planning and deliberate guidance of a UAV’s path during 

flight. An autopilot failure mode is an electronics failure that occurs if the UAV fails to 

adhere to navigation planning, primarily during waypoint navigation. 

Failsafe behavior: In a swarm environment, an autopilot failure can have 

devastating impacts to the entire swarm. Depending on the proximity of nearby assets, 

the failing UAV can collide with other UAVs, enter into prohibited territories, or create a 

safety hazard for nearby personnel. Therefore, the optimal failsafe behavior for an 

autopilot failure scenario is to first attempt to take over manual control if the support is 

present. If that is not feasible, the UAV should immediately reduce altitude and land. The 

landing method is a mission driven behavior that does not warrant decomposition at this 

level of abstraction. Refer to Figures 15 and 16 for the MP codes used and an example 

event trace generated from the model.  
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Figure 15.  MP Code – Autopilot Failure 
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Figure 16.  MP Sequence Diagram – Autopilot Failure 

As displayed in the sequence diagram in Figure 17, MP affords the ability to 

adjust the size of the search team or UAVs in this case. Despite that one UAV enters into 

an autopilot failure mode, all relevant actors are still traced to their cascaded behaviors 

and other actors. For example, the swarm operator is responsible for monitoring the 

mission of all active assets. This includes checking for the validity of detected targets and 

issuing track or recovery commands, even if they are to occur simultaneously. Therefore, 

in this example, when the failed UAV is given the command to return to launch, MP 

continues to trace the other responsibilities of the swarm operator. 
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Figure 17.  MP Sequence Diagram – Autopilot Failure (Scope = 2) 

2. Bingo Fuel 

Whether powered by a gas or onboard batteries, UAVs are and will always be 

limited by the inherent range of their fuel source. “Bingo fuel” is the calculation of the 

point at which there is just enough fuel to make it to the pre-designated landing location, 

which can be the original launch or some other rendezvous location. Some may not 

consider this a failure mode in the traditional sense, as failure modes are typically 

unanticipated scenarios. While bingo fuel can and should be a predicted behavior, for the 

purposes of this research, a bingo fuel failure mode is considered an abnormal event that 

occurs long before the anticipated bingo fuel range. For example, the Zephyr II has a max 

range of 40 km and an endurance of 60 minutes. If 20 minutes into the flight the Zephyr 

II enters bingo fuel, this would be considered an unanticipated and abnormal event that 

would need to be mitigated through a appropriate failsafe behavior. 

Failsafe behavior: The assumption in a bingo fuel situation is that the operator or 

autonomous system still has complete command and control over flight operations. This 
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failure mode characteristic allows for great flexibility in failsafe options. The most 

common failsafe behavior for bingo fuel is return to launch (RTL), a predetermined 

landing area or autonomously land. 

 

Figure 18.  MP Code – Bingo Fuel  
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Figure 19.  MP Sequence Diagram – Bingo Fuel  

 

Figure 20.  MP Sequence Diagram – Bingo Fuel (Scope = 2) 
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3. Control Surface Malfunction 

There are many critical systems like motors, sensors and onboard computers that 

enable a UAV to take flight. All of these components are inconsequential without the 

actuators and control surfaces. A control surface malfunction is a mechanical failure 

impacting UAV actuators like ailerons, elevators, rudders and propellers.  

Failsafe behavior: The unfortunate reality about control surface failures is the 

operator does not have many options as it relates to failsafe behaviors. There are 

mitigation techniques that can be employed to avoid complete loss of the air vehicle. 

Many of these require rebooting the electronics that control the failed surface component, 

fully actuating the failed surface component in both abduction and adduction extremes 

and a combination of both. The following MP code and corresponding graph in Figures 

21 and 22 executes a tiered approach where multiple failsafe behaviors are tried before a 

controlled crash is attempted. Given the compound implications of this failure, even if the 

failure is mitigated through either of the failsafe behaviors, the UAV is directed to return 

to launch (RTL) for evaluation.  
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Figure 21.  MP Code – Control Surface Failure 
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Figure 22.  MP Sequence Diagram – Control Surface Failure 
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Figure 23.  MP Sequence Diagram – Control Surface Failure (Scope 
= 2) 

4. Ground Control Station (GCS) Loss of Link 

“Drones are dependent on wireless transmissions to relay commands and 

navigational information. Those connections can be fragile. Records show that links were 

disrupted or lost in more than a quarter of the worst crashes” (Whitlock, 2014). For a 

swarm mission scenario, a GCS is used heavily in centralized and hybrid command and 

control setups. When a loss of link occurs, the swarm operator loses the ability to direct 

the swarm. The introduction of autonomy into swarms has helped mitigate this risk, but 

there will almost always be a need for operators to have some supervised autonomy 

control over the swarm, which will require a GCS or some other medium. For the 

purposes of this research, a 1:1 GCS to UAV ratio is used when modeling the failure 

mode. 
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Failsafe Behavior: With many failure modes, the UAV should attempt some auto-

correction behaviors before assuming the failure is irreversible, which is the case with a 

GCS loss of link scenario. For example, when a UAV loses its link to the GCS, a 

recursive check for loss linkage may occur for a predetermined N minute timeframe (e.g., 

two minutes). If the timeframe expires and the GCS link has not reestablished 

connection, the failsafe behavior is enacted. 

 
LT = less than and GT = greater than 

Figure 24.  MP Code – GCS Loss of Link  
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LT = less than and GT = greater than 

Figure 25.  MP Sequence Diagram – GCS Loss of Link  
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LT = less than and GT = greater than 

Figure 26.  MP Sequence Diagram – GCS Loss of Link (Scope = 2) 
 

5. Loss of Global Positioning System (GPS) 

Aerial vehicles have relied on GPS since its introduction. GPS provides both the 

operator and UAV with extremely accurate information on location. When a UAV loses 

the ability to use GPS, it becomes unaware of its coordinate-based location in the sky, 

which  “result in inaccurate positions, and can have important consequences in dense 

urban terrain” (Rabbath, Alain, and Léchevin 2010) and other heavily populated areas.  

Failsafe Behavior: Losing GPS is handled much like the GCS loss of link failure 

mode. When losing GPS, the UAV should also attempt to reconnect, but on a much 

shorter timetable. An abbreviated timetable (e.g., 20 seconds) is required due the safety 

implications of losing GPS. Depending on the speed and direction, without GPS the UAV 

can quickly waver into high-risk territories. Once this timetable has expired, the UAV 

should kill the throttle, forcing a controlled crash. Furthermore, if GPS connection is 

reestablished, the UAV should immediately return to launch for evaluation.  
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LT = less than and GT = greater than 

Figure 27.  MP Code – Loss of GPS  
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LT = less than and GT = greater than 

 

Figure 28.  MP Sequence Diagram – Loss of GPS  
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LT = less than and GT = greater than 

 

Figure 29.  MP Sequence Diagram – Loss of GPS (Scope = 2) 

6. Loss of Link to Payload 

Unmanned aerial vehicles serve many purposes and the payloads they employ 

make those purposes possible. Specifically for SAR missions, imaging payloads are 

considered integral to the success of the mission. To mitigate payload failures, there are 

many design factors to consider, which include (Johnson, 2012): 

• available mass, volume and power budgets 

• video interfaces and available wires 

• bandwidth 

• mission duration 

• slant range or distance from UAV camera to target 

• on-board image processing 
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To complicate matters, consider what is needed to deliver narrow-field-of-
view, quality video from a small aircraft. The platform is moving, 
vibrating, and subject to random and uncontrollable motion of the aircraft. 
The line of sight for the delivered video needs to point at the object of 
interest on the ground, hold on that object of interest while the aircraft is 
flying its course, and be immune to input disturbances that would cause 
the camera’s line of sight to move. (Johnson, 2012).  

The overwhelming need for failsafe behaviors among payloads quickly becomes 

apparent. 

Failsafe Behavior: “Electronics failures are reported for about 25% of all failures, 

the rest being attributed to weather and pilot error” (Caswell and Dodd, 2014). Therefore, 

the first failsafe behavior to activate during a payload loss of link failure is to cycle or 

reboot the payload controller. If a reboot does not correct the issue, the next step in the 

process is to bring the UAV home, or RTL, for troubleshooting. If the payload failure has 

resulted in a GCS loss of link, the UAV should autonomously land. 
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Figure 30.  MP Code – Loss of Link to Payload  
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Figure 31.  MP Sequence Diagram – Loss of Link to Payload  

7. Geofence Breached 

Whether manned or unmanned, most SAR missions are constrained by a search 

area perimeter. Through algorithmic perimeter planning, a search area is defined based on 

the highest probability of success. This area can expand exponentially as each hour 

passes. In UAV terminology, this perimeter is known as a geofence, or a virtual barrier 

that constrains the air vehicle to a certain area. With unmanned swarm missions, a 

geofence is usually defined by highest area for probability of rescue or by command and 

control communication limitations. A geofence breach occurs when one of the UAVs 

exits the predefined geofence boundary. A breach can have serious safety implications 

and must be handled immediately. Furthermore, a breach resulting in the loss of 

communications is difficult to reverse. To avoid complete communications blackout, the 
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area defined by the geofence may be reduced to provide a communications buffer just 

outside of the geofence. 

Failsafe Behavior: When a UAV ignores a directive to remain within a defined 

area, it is assumed that something rather significant is occurring within the UAV’s 

autopilot control. Therefore, the default failsafe behavior for a geofence breach is to take 

over manual control of the air vehicle and return it to the launch location. If manual 

override is unsuccessful, the follow up failsafe behavior is to kill the throttle and enter 

into a controlled crash. 
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Figure 32.  MP Code – Geofence Breach  
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Figure 33.  MP Sequence Diagram – Geofence Breach  
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Figure 34.  MP Sequence Diagram – Geofence Breach (Scope = 2) 

B. FAILURE MODE PRIORITIZATION 

The previous section described a detailed analysis of potential failure modes and 

failsafe behaviors through building isolated MP models. When planning for potential 

failure modes and corresponding failsafe behaviors, it is important to place priorities or 

weights to each failure mode. Whether the failure mode monitoring software is active or 

passive, most UAV health monitoring systems use an order of operations or flow chart 

approach to determine the best mitigation strategy for a given failure mode. These 

automatic systems can be developed and integrated onboard a UAV to reduce its 

vulnerability to errors and failures in the actuators, control surfaces and sensors (Rabbath, 

Alain, and Léchevin 2010). As detailed below, there are multiple reasons for this 

requirement.  
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• Catastrophic failure modes: There are certain disastrous failure modes 

that, upon occurrence, must be dealt with immediately and all other failure 

modes become trivial.  

• Simultaneously occurring failure modes: It is not uncommon for failure 

modes to emerge concurrently, forcing a decision on which failure mode 

should be treated first. This is one of the key benefits to using an order of 

operations approach for health monitoring. As seen Figure 35, there is no 

situation where two or more concurrent failure modes can break the 

model. 

• Shared failsafe behaviors: In taking a more object-oriented approach, there 

are several failure modes that have the same failsafe behavior (e.g., Return 

to Launch). An order of operations allows for the declaration of one 

failsafe method for multiple failure modes.  
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Figure 35.  Failure Mode and Failsafe Behavior Order of Operations 

To expand further, MP can be used in an object-oriented prioritization approach 

to evaluate the impact of numerous potential failure modes. After an exhaustive list of 
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potential failure modes and failsafe behaviors has been identified, they should be 

analyzed and prioritized. Through numerous modeling tests, prioritization tends to follow 

a more drastic to less drastic failsafe behavior pattern. In Table 3, all failure modes 

ranked near the top share the failsafe behavior of controlled crash. Once priorities have 

been assigned, each behavior should be reviewed for commonality. Specifically, failsafe 

behaviors have a strong possibility of replication, which allows the modeler to generate a 

single method to address multiple failure mode scenarios. For example, both a geofence 

breach and loss of GPS share the failsafe behavior to enter a controlled crash.  

Table 3.   Failure Mode Priority and Commonality 

Rank Failure Mode Failsafe Behavior Controlled 
Crash 

Auto 
Land RTL 

1 Control Surface 

Controller Reboot 
  - Failure Remains? 
    Yes: Component Actuation 
      - Failure Remains? 
        Yes: Controlled Crash 
        No: Return to Launch 
    No: Return to Launch 

X  X 

2 Autopilot 

Attempt to take Manual Control 
  - Manual Control 
    > Return to Launch 
  - No Manual Control 
    >  Controlled Crash 

X  X 

3 Loss of GPS 

Attempt Reconnect 
  - Reconnected 
    > Return to Launch 
  - Not Reconnected 
    > Longer than 20 seconds? 
      Yes: Controlled Crash 

X  X 

4 Geofence Breached 

Take Manual Control 
  - Manual Control Failed 
    > Controlled Crash 
  - Manual Control Success 
    > Return to Launch 

X  X 

5 GCS Link Loss 

Attempt to take Manual Control 
  - Manual Control 
    > Return to Launch 
  - No Manual Control 
    > Auto Land 

 X X 

6 Payload Link Loss 

Controller Reboot 
  - Failure Remains? 
    Yes: GCS Linked? 
      No: Auto Land 
      Yes: Return to Launch 

 X X 
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Rank Failure Mode Failsafe Behavior Controlled 
Crash 

Auto 
Land RTL 

    No: Resume Target Search 

7 Bingo Fuel 

Check Fuel Level  
  - Enough to Return? 
    > Return to Launch  
  - Not Enough to Return? 
    > Auto Land 

 X X 

 

The following MP model combines the failures modes defined in Table 3 through 

a prioritized and object-oriented methodology. On the UAV, these checks would occur in 

a feedback loop with a heartbeat-like return of the UAV’s status. The status would most 

likely indicate a normal operation or presence of failure. Many of the failures have 

automatically engaged failsafe behaviors, while others require the intervention of a 

human operator to make a decision on how to proceed. To avoid the chance of ignoring a 

high priority failure mode, the loop continues to check for failure modes, despite the state 

of the current failure. This allows for the interruption and reassignment of tasking. 
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Figure 36.  MP Code – Combined Failure Modes 

C. PATTERNS 

The list of potential failure modes can grow much larger than the seven descried 

in the previous section. Through the iterations of failure mode insertions and analyses, a 

common pattern emerged, and once recognized, made it easier to understand the impact a 
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failure mode can have on an a set of event traces. In MP, a failure is presented as an 

alternative event that can occur based on where the failure mode is placed within the 

model. If a failure is place at the root level for a sequence of events, the failure will 

override the entire operation, as with many of the SAR mission failure modes presented 

in this thesis. 

 

Figure 37.  MP – Failure Mode and Failsafe Behavior Pattern 

These patterns for failure mode insertion provide a basis for understanding and 

planning for failure mode analysis in MP. This pattern is used in several of the failure 

modes presented in the previous section, but is not a one-size-fits-all approach. Though 
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discovering patterns and formulas make complex tasks easier, it is import to remember 

that as patterns are realized, complacency and assumptions are avoided. This mode of 

thinking is similar to the patterns a medical doctor follows every time a diagnosis is 

made. If steps are skipped or forgotten about due to complacency, the consequences can 

be devastating.  
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V. ANALYSIS OF FINDINGS AND RESULTS 

A. KEY FINDINGS 

1. Event Trace Analysis 

When the behaviors between actors are effectively modeled in MP, the analytical 

benefits are realized as the modeler steps through each event trace. Through this ability to 

view every possible interaction, anomalies and abnormalities in the modeled behaviors 

can be revealed. There are additional capabilities offered by MP that make this process 

even easier.  

Assertion Checking: As with any modeling approach, the models and underlying 

programing needs to be debugged. Given the exhaustive set of event traces produced by 

MP, this can be a rather overwhelming. Monterey Phoenix offers the CHECK construct 

that was used in this research to automate the event trace monitoring. This assertion 

checking approach marks any traces that violate an assigned Boolean expression 

(Auguston 2016). Once the model was proven to be efficient and bug free these CHECKs 

were removed.  

Trace annotation: For this research the CHECK clause provided the level of detail 

necessary to adequately debugging the SAR models. In more complex models, MP also 

offers trace annotations to make messages more specific and focused. Instead of a generic 

message about what is occurring, variable-based values from the model are also captured 

in the message.  

 
 CHECK  #Assess_Detected_Object FROM Swarm_Operator == 
   #Object_is_Valid_Target FROM Swarm_Operator 
 ONFAIL SAY(“Object is not valid”); 
 

2. Concurrent Failure Mode Modeling 

As mentioned in the section on “Failure Mode Prioritization,” it is beneficial to 

prioritize and continuously check for failure modes in a loop. When considering the 

programming logic that would be required to create this heartbeat like feedback loop, the 
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most efficient approach is to bundle these potential failure scenarios into a single module 

or class.  

Through studying the benefits of using MP to inspect the impact of failure modes 

on a swarm, it was ultimately determined that MP is much more powerful when 

analyzing each failure mode in a phased approach, where each failure mode is modeled in 

an isolated manner. When every failure mode and failsafe behavior is modeled 

concurrently, the ability to inspect the impacts becomes extremely difficult. Furthermore, 

it becomes a practice in futility as the scope is increased on a simultaneous analytical 

modeling approach. 

3. Failsafe Behavior Consistency and Commonality Validation 

As revealed during this research, failure modes may require mitigation through 

common failsafe methods. This is not necessarily a discovery, but more of a hypothesis 

or assumption that the majority of failure modes are distinctive in their behaviors, but 

often, assumptions cloud the researchers ability to recognize emergent patterns between 

failsafe behaviors. 

Once the Monterey Phoenix recipe for modeling failure modes and failsafe 

behaviors was understood, a systematic and methodical approach was taken to model 

each failure mode in an isolated environment against the baseline SAR mission. This 

approach was an iterative process contained within each failure mode analysis period. 

Once it was determined that a failure mode had reached its optimal modeling solution, 

the next failure mode analysis period began. 

After modeling all failure modes, the process of failure mode prioritization 

started. As discussed in the prioritization section, setting an order of precedence is 

necessary to properly handle the more significant or detrimental failure modes first. 

Given the incremental approach to modeling individual failures, it was not until this point 

that inconsistencies among similar failsafe behaviors started emerging.  

An example of a situation where an inconsistency was identified can be seen in 

the analysis of the failure modes, “payload loss of link” and “geofence breach.” During 
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the examination each, the failsafe behavior “return to launch” (RTL) was identified. 

While this is a logical behavior for both scenarios, the geofence breach failure is possibly 

tied to erroneous waypoints and the RTL failsafe behavior included clearing out all 

waypoint before returning to launch. The payload loss of link failure also had a failsafe 

behavior of RTL, but while the clearing of waypoints is also applicable, it was not 

included. It was not until these failures were modeled together that a common RTL 

method was identified that applied to all RTL behaviors. 

From this lessons learned activity, a new “failsafe behavior consistency 

validation” method to planning for failure modes was developed. In contrast to analyzing 

each failure mode and corresponding failsafe behavior in a vacuum, failure modes 

modeled and examined together in a staged approach appear to provide greater benefit. In 

this research, for example, the failure mode identification, failure mode model placement, 

failure mode impact analysis, and failsafe behavior employment could be used as 

consistency and commonality validation stages. Instead of iterating through each failure 

mode and failsafe behavior individually, all failure modes would work through each stage 

concurrently. A new hypothesis for this phased approach could be written as the 

following: 

Failure mode and failsafe behavior consistencies are simplified if each 
step to analyze individual failure modes is staged and all failure modes 
iterate through each stage concurrently. 

Employment of the above hypothesis predicts that common failsafe behaviors will 

be identified earlier in the analysis process, thus allowing for more rapid model 

optimization. Recognizing common failsafe behaviors across all failure modes creates a 

shared method for each failure mode to call that provides an object-oriented approach for 

failure modes to leverage. Additionally, as new failure modes are discovered, the 

recreation of failsafe behaviors may become unnecessary. 

Another example of this approach is demonstrated in Table 3: Failure Mode 

Priority and Commonality. The failsafe behaviors, auto land, controlled crash, and return 

to launch became methods for all other failure modes to call if the behavior was 

applicable. 
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B. SURPRISING AND UNEXPECTED OUTCOMES 

1. Bingo Fuel Emergent Failsafe Behavior 

As seen in Figure 38, during initial examinations of the “bingo fuel” failure mode, 

the obvious failsafe behavior was to return home or auto land. After close examination of 

the event traces generated from the model (see Figure 39), there were instances where the 

UAV would return to launch right after finding a potential target. This was not 

necessarily a modeling error but more of an identification of emergent or better-suited 

behavior.  

 

Figure 38.  MP Sequence Diagram – Bingo Fuel (Initial Analysis) 
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Figure 39.  MP Sequence Diagram – Bingo Fuel (Initial Analysis) 

Failsafe behaviors are often necessary deviations from behaviors considered 

detrimental to the mission. Many may conclude that a failsafe behavior that is not 

triggered correctly consequentially becomes a failure mode. This may hold true in most 

situations where the value of the asset, or UAV in this research, is more valuable than the 

mission. When the value of the mission is greater than the assets involved, there lies a 

great opportunity for the emergence of new behaviors. 

When unmanned swarms of UAVs are performing SAR missions for lost humans 

(e.g., at sea), the value of the mission is most definitely more valuable than the asset. In 

this situation, it’s important to reevaluate the failure modes and consider how the mission 

may better be served if adjustments were made to the failsafe behaviors. Again, in the 
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case of the bingo fuel failure mode, once this reexamination occurred, two emergent 

behaviors were realized. 

Sacrifice the UAV – As discussed in the failure modes section, when a bingo fuel 

event occurs, there is just enough fuel to return to launch or some predetermined location. 

In this scenario, when the UAV enters bingo fuel, the new failsafe behavior is to reassess 

the SAR environment before returning to launch. If during that reassessment a target or 

person in distress (PID) is identified, the swarm operator has the option to allow the UAV 

to continue tracking the target. Of course, this will ultimately result in the expiration of 

onboard fuel and loss of aircraft. That result pales in comparison to the benefits gained 

from added tracking details on a lost target, which may result in lives saved. Figures 40 

and 41 illustrate the new MP model and sample event trace containing the new failsafe 

decision. 
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Figure 40.  MP Code – Bingo Fuel (UAV Sacrifice) 
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Figure 41.  MP Sequence Diagram – Bingo Fuel (UAV Sacrifice) 
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Figure 42.  MP Sequence Diagram – Bingo Fuel (UAV Sacrifice, 
Scope = 2) 

UAV Relief – As more thought and analysis was performed on the bingo fuel 

failure modes and the new failsafe decision to sacrifice the UAV, another failsafe 

decision option emerged. Depending on the size of the swarm, the swarm operator may 

want to have the option to recover the bingo fueled UAV and allow for the swarm to 

compensate for the UAV that has returned home. If employed in theatre, this option 

would require a great deal of logistics and complicated algorithms to calculate the 

optimal swarm coverage without allowing the swarm to be spread too thin.  

This approach involves a new operation to allow the nearest UAV to relieve the 

bingo fueled UAV. Once the new UAV arrives, the UAV experiencing the bingo fuel 

failure mode checks its fuel level and decides to return to launch or auto land. In addition 

to the complicated algorithms required to coordinate this activity, the formula to calculate 

the bingo fuel would need to be adjusted to include the distance of the nearest UAV. This 

would be a constantly changing value as the distances are continuously changes. 

 



 66 

 

 

 

Figure 43.  MP Code – Bingo Fuel (UAV Relief) 
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Figure 44.  MP Sequence Diagram – Bingo Fuel (UAV Relief) 
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VI. CONCLUSION 

A. BENEFITS OF STUDY 

Understanding the impacts of failure modes and how they can influence a mission 

can provide great benefit to mission planning. This not only applies to the swarming 

search and rescue (SAR) missions presented in this research, but to any mission where 

advanced planning is required. Modeling the CONOPS of the SAR mission in Monterey 

Phoenix (MP) proved to provide valuable insight into identifying failure modes and 

failsafe behaviors.  

A product of this research included a small catalog of prioritized failure modes 

and corresponding failsafe behavior for fixed wing UAVs. The failure modes modeled in 

this thesis are closely related to the SAR mission, but have applicability in various other 

single UAV and swarming UAV missions. 

Through this research of modeling failure modes and failsafe behaviors, a 

common pattern emerged. This pattern is not design or mission specific and can be used 

to model and understand how failure impact a system. By leveraging a straightforward 

and repeatable “do activity  activity failed  do failsafe” pattern, the modeler is able to 

rapidly insert mitigation behaviors throughout the model for unwanted failure modes.  

An interesting and beneficial discovery revealed through this research was the 

discovery of several emergent behaviors. While modeling each failure mode and 

comparing event traces for each failsafe behaviors, situations and scenarios that would 

not have otherwise been revealed, or at least not as quickly, emerged. The bingo fuel 

scenario was one of the most notable emergent behaviors. The default assumed behavior 

was to return to launch when fuel was running low, but careful examination of the event 

traces revealed the importance of comparing mission importance to asset importance. 

With the SAR mission, it is obviously more important to locate and potentially save a 

person or persons in distress (PID). This shift of importance from asset to mission 

revealed an alternate behavior to have the bingo fueled UAV reassess the environment 

for PIDs. If a PID is discovered, the UAV will now stay out longer to gather geospatial 
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data about the PID’s location. This will potentially result in the loss of the UAV, which is 

trivial when considering the possibility of saving a person’s life. 

B. ITEMS FOR FURTHER STUDY 

Monterey Phoenix has many uses outside what was revealed in this thesis. While 

working through this study, several areas of opportunity for furthering the research were 

identified. The following section discusses these potential follow-on opportunities. 

1. Bingo Fuel Expansion 

A surprising discovery with the bingo fuel scenario was discovered late in this 

thesis research that provides two opportunities to expand the research into MP’s 

capabilities. As discussed, MP facilitated the ability to recognize emergent behaviors 

through weighing importance of the mission to the asset in the mission.  

One of those behaviors was to leverage neighboring UAVs in the swarm to 

provide relief to the bingo fueled UAV. This approach would provide continuous 

coverage for the search area, as the other UAVs spread out. This approach would require 

a significant amount of computational analysis to efficiently manage the swarm. There 

are two main follow-on opportunities with this method. 

A substantial optimization problem exists for calculating the area of coverage for 

each UAV and how that area would change based on the relief situation. Minimizing the 

values for the optimal coverage overlap areas would be a worthy objective function. 

Additionally, considerations or constraints would need to be made for the time required 

for a neighboring UAV to arrive. This value would need to be wrapped into the bingo 

fuel calculation to provide ample time for response.  

A second opportunity lies in expanding the MP model. As seen in Figure 45, only 

the failure and failsafe behaviors for a single UAV are modeled. The model does not 

account for which UAV should provide the relief. There exists an opportunity to update 

the model to establish relationships between each UAV in the swarm. These relationships 

could include the reactionary behavior of the UAV providing relief as well as the swarm 

operator.  
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Figure 45.  MP Sequence Diagram – Bingo Fuel (UAV Relief, Scope = 2) 

2. Inter-UAV Communications 

Monterey Phoenix offers the ability to model the communication transmissions 

between actors. An additional area for potential future study is to use MP to model the 

inter-UAV communications among swarms through a publish-subscribe pattern. The 

current version of firebird.nps.edu contains example 11, a publish-subscribe model that 

could be used as a foundation (Auguston and Giammarco 2016). 

3. Swarm vs. Swarm Model Expansion 

The Department of Defense (DOD) is starting place a fair amount of attention on 

the air-to-air combat abilities of swarming unmanned aerial systems (UAS) and more 

specifically, how swarms might behave when fighting against other swarms. As briefly 

discussed in the small scope hypothesis section, MP has the ability to provide valuable 

insight into a swarm vs. swarm. A future research item might be to model the behaviors 
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within each swarm group and the interactions between adversary swarms to determine the 

most optimal way to engage in aerial combat. 

4. Monterey Phoenix Phased Modeling Approach 

As revealed in the section on failure mode prioritization, the ability to model 

multiple failure modes in one schema is beneficial for identifying commonalities, but 

imposes a great time cost on MP’s event trace performance. A valuable area of research 

would be to address these large models with multiple decision paths. This was briefly 

discussed in Chapter III of this thesis, but one recommendation is a phased approach, 

where areas of the mission would be extracted and assigned to an individual phase (e.g., 

pre-launch, takeoff, ingress, egress and landing) and modeled discretely. It is important to 

watch for behaviors that cross over or effect more than one phase, as that will need to be 

accounted for in the model. 

5. Cross-Domain Pattern Recognition 

A useful outcome of this thesis was the development of a pattern for modeling 

failure modes and failsafe behaviors. Patterns can be extremely valuable in developing 

expedient behaviors. A follow-on research effort could expand on this principle by 

identifying behavior patterns that repeat across different MP architecture models. Once 

identified, a playbook of sorts with these reusable patterns could provide benefit to the 

MP user community. 
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APPENDIX: MP CODE 

The following section provides a complete plaintext searchable list of all 

Monterey Phoenix Code used for the purposes of this thesis. 

Swarm SAR Mission - Baseline 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Control Surface Failure 

SCHEMA Swarm_Search_and_Track 
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ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    Control_Surface_Failure 
    /*Failsafe Behavior*/ 
    Controller_Reboot  
    ( 
      ( Failure_Remains  
        Component_Actuation  
        ( Failure_Remains Attempt_Controlled_Crash |  
          Failure_Mitigated Return_to_Launch 
        ) 
      ) |  
      Failure_Mitigated Return_to_Launch 
    )   
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Autopilot Failure 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 



 75 

   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    Autopilot_Failure 
    /*Failsafe Behavior*/ 
    Attempt_Manual_Control  
    ( 
      Manual_Control_Success Return_to_Launch | 
      Manual_Control_Fail Controlled_Crash 
    )   
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Loss of GPS 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
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ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    Loss_of_GPS 
    /*Failsafe Behavior*/ 
    Attempt_Reconnection  
    ( 
      Reconnection_Failed (LT_20_Seconds |  
                           GT_20_Seconds Controlled_Crash) 
      Reconnection_Successful Return_to_Launch 
    ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Geofence Breached 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
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(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    Geofence_Breached 
    /*Failsafe Behavior*/ 
    Take_Manual_Control 
    ( 
      Manual_Control_Failed Controlled_Crash | 
      Return_to_Launch    
    ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – GCS Loss of Link 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    GCS_Loss_of_Link 
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    /*Failsafe Behavior*/  
    Attempt_Reconnect 
    ( 
      Reconnected Resume_Target_Search | 
      Not_Reconnected (LT_2_Minutes Wait | GT_2_Minutes Auto_Land ) 
    ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Payload Loss of Link 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /*Failure Mode*/ 
    Payload_Loss_of_Link 
    /*Failsafe Behavior*/ 
    Controller_Reboot 
    ( 
      ( Failure_Remains 
        ( GCS_Loss_of_Link Auto_Land | 
          Take_Manual_Control Return_to_Launch 
        ) 
      ) 
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      Failure_Mitigated Resume_Target_Search   
    ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission – Bingo Fuel 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /* Failure Mode */ 
    Bingo_Fuel  
    /* Failsafe Behavior */ 
    Check_Fuel_Level 
    (  
      Is_Returnable Return_to_Launch |  
      Is_Not_Returnable Auto_Land 
    ) 
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
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  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm SAR Mission - All Failure Modes 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) 
 
    /*******Failure Modes******/ 
     
    /*Control Surface Failure*/ 
    Control_Surface_Failure Reset_Actuation_Module  
    (  
      ( Failure_Remains Component_Actuation  
        ( Failure_Remains Controlled_Crash |  
          Failure_Mitigated Return_to_Launch  
        )  
      ) | Failure_Mitigated Return_to_Launch 
    ) | 
     
    /*Autopilot Failure*/ 
    Autopilot_Failure Reset_Autopilot_Module  
    ( Failure_Remains Attempt_Manual_Control  
      ( Manually_Controlled Return_to_Launch |  
        Not_Manually_Controlled Controlled_Crash  
      ) |  
      Autopilot_Restored Return_to_Launch  
    ) | 
 
    /*Loss of GPS Failure*/ 
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    Loss_of_GPS Reset_GPS_Module Attempt_Reconnect  
    ( Reconnected Return_to_Launch | Not_Reconnected  
      ( LT_20_Seconds Wait | GT_20_Seconds Controlled_Crash )  
    ) | 
     
    /*Geofence Breached Failure*/ 
    Geofence_Breached Attempt_Manual_Control  
    ( Manually_Controlled Return_to_Launch |  
      Not_Manually_Controlled Controlled_Crash  
    ) | 
     
    /*GCS Loss of Link Failure*/ 
    GCS_Loss_of_Link Reset_GCS Reset_GCS_Module Attempt_Reconnect  
    ( Reconnected Resume_Target_Search |  
      Not_Reconnected ( LT_2_Minutes Wait |  
                        GT_2_Minutes Auto_Land )  
    ) | 
 
    /*Payload Loss of Link Failure*/     
    Payload_Loss_of_Link Reset_Payload_Module  
    ( Failure_Remains Attempt_Manual_Control  
      ( Manually_Controlled Return_to_Launch |  
        Not_Manually_Controlled Auto_Land  
      ) | Failure_Mitigated Resume_Target_Search  
    ) | 
     
    /*Bingo Fuel Failure*/ 
    Bingo_Fuel Check_Fuel_Level  
    ( Adequate_Fuel Return_to_Launch |  
      Inadequate_Fuel Auto_Land ) 
    ) 
 
*); 
 
Auto_Land: 
  Track_Current_Position 
  Reduce_Altitude 
  Enter_Reverse_Helix 
  Land 
  Power_Down; 
     
Controlled_Crash: 
  Track_Current_Position   
  Kill_Throttle; 
 
Return_to_Launch: 
  Clearout_Existing_Waypoints 
  Set_Final_Waypoint 
  Travel_to_Final_Waypoint; 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 
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Swarm SAR Mission – Bingo Fuel: UAV Sacrifice 

 
SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /* Failure Mode */ 
    Bingo_Fuel  
    /* Failsafe Behavior */ 
    Reassess_Environment 
    ( 
      ( Target_Found Track_Target) |  
      ( Non_target_Found Check_Fuel_Level 
        (  
          Is_Returnable Return_to_Launch |  
          Is_Not_Returnable Auto_Land 
        ) 
      ) 
    )   
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 
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Swarm SAR Mission – Bingo Fuel: UAV Relief 

SCHEMA Swarm_Search_and_Track 
 
ROOT Swarm_Operator:  
   Command_Swarm_to_Commence_Mission 
   Monitor_Mission 
   Issue_Recovery_Command; 
 
Monitor_Mission: 
(* 
  Assess_Detected_Object  
    ( Object_is_Valid_Target | Object_is_Not_Target ) 
*); 
 
ROOT Swarm:  
     {+ UAV +}; 
     UAV: Commence_Mission 
          Search_and_Track_Objects 
          End_Mission; 
 
Search_and_Track_Objects: 
(* 
  ( 
    Detect_Object Evaluate_Object  
    ( Target_Found Track_Target |  
      Non_target_Found Resume_Target_Search ) | 
 
    /* Failure Mode */ 
    Bingo_Fuel  
    /* Failsafe Behavior */ 
    Request_Relief 
    Nearest_UAV_Arrives 
    Check_Fuel_Level  
    (  
      Is_Returnable Return_to_Launch |  
      Is_Not_Returnable Auto_Land 
    )  
  ) 
*); 
 
COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator  
 DO COORDINATE <!> $b: Commence_Mission  FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD; 
 
COORDINATE <!> $a: Track_Target  FROM Swarm, 
 $b: Assess_Detected_Object FROM Swarm_Operator  
   DO ADD $a PRECEDES $b; OD; 
 
COORDINATE $a: Issue_Recovery_Command  FROM Swarm_Operator  
 DO COORDINATE <!> $b: End_Mission FROM Swarm  
   DO ADD $a PRECEDES $b; OD; 
  OD;   
 
ROOT Environment: (* Present_Object_Signature *); 
 
COORDINATE <!> $a: Present_Object_Signature FROM Environment,  
 $b: Detect_Object      FROM Swarm 
 DO ADD $a PRECEDES $b; OD; 

Swarm vs. Swarm – Event Trace Example 

SCHEMA Blue_vs_Red 
Swarm: {+ UAV +}; 
UAV: Attack Shoot_enemy_UAV (destroyed | return_to_base); 
Shoot_enemy_UAV: (hit | miss);   
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ROOT Blue: Swarm;      
ROOT Red: Swarm; 
COORDINATE <!> $h: hit FROM Blue, 
           <!> $d: destroyed   FROM Red     
 DO ADD $h PRECEDES $d; OD; 
 
COORDINATE <!> $h: hit FROM Red, 
      <!> $d: destroyed     FROM Blue 
 DO ADD $h PRECEDES $d; OD;  
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